Reversible Degradation of Diclofenac in Groundwater **Under Uncertainty**

1. MOTIVATION

Diclofenac

- Contaminant of Emerging Concern (Anti-Inflammatory drug)
- suspected to promote bioaccumulation
- detected in groundwater worldwide
- recalcitrant in aqueous bodies
- difficult to foresee its fate in aguifers

Development of geochemical models and predictive tools

2. METHODOLOGY

Development of a robust geochemical model M₊ considering the molecular dynamics of multi-stage chemical reactions → kinetic reaction rates:

$$RR_i(t) = \frac{dC_i(t)}{dt} = f_i(C_i, C_{i+1}, ..., C_{N_i}, \mathbf{p})$$

Aqueous concentrations

Vector of uncertain parameters involved in the reaction leading to

Formulation of inverse problem

operator

concentrations (state variables)

species i-th

Model calibration in a stochastic context through **Bayesian inference** (Acceptance-Rejection

Sampling - ARS)

Objective: estimation of p given several measurements of C

Given:

- 14 observations of state variables
- 7 uncertain parameters encompassed in the 4 main processes of the Diclofenac biotransformation cycle

Assuming:

- independent, identically distributed prior probability distributions of the uncertain parameters
- 1. Numerical implementation of the geochemical model in the PHREEQC Software
- 2. Running the direct model (numerically) to sample the prior parameter space → to obtain a Monte Carlo collection of realizations of the phenomenon under study
- 3. Reject realizations which do not fulfill the ARS criterion (based on the sum of the squared residuals between measured and modeled concentrations)
- Evaluate empirical probability distributions of the uncertain parameters included in p → posterior (i.e., conditional on data) multivariate distribution of $p \rightarrow$ Assessment of predictive uncertainty based on percentiles associated with concentration histories

3. RESULTS

*Normalized values against the initial concentration of Diclofenac

4. ONGOING RESEARCH & ASSOCIATED RESULTS

Motivation: Data scarcity limits the quality of posterior parameter estimates associated with process P₃

- Objective: Simplifying the complete geochemical model M₁ through:
- (1) Global Sensitivity Analyses in a multi-model context
- (2) Ranking of model candidates through Maximum Likelihood and classical Model Identification Criteria (e.g., KIC)

Considering 3 competing models (M2, M3, M4), each characterized by a mathematical formulation of the reaction rate RR3 of process P3 obtained by progressively simplifying model M1.

Model M₃ appears to be favored by postcalibration analyses, possibly due to:

- (1) calibration dataset quality and/or
- (2) parametrization redundancy in model M₁
- → Significant simplification of P₃ (up to first order reaction rate RR3)

5. CONCLUSIONS & FUTURE PERSPECTIVES

- The proposed geochemical model correctly interprets the reversible behavior exhibited by Diclofenac
- > Stochastic calibration of the complete model is successful (quantifying predictive uncertainty) even as dataset quality appears to favor a more streamlined geochemical model than M_1
- The proposed methodology can be applied to customized reactive systems under uncertainty

Underground space: from resources to structures and infrastructures – March 8th, 2022

Ceresa Laura, Guadagnini Alberto, Porta Giovanni, Riva Monica Department of Civil and Environmental Engineering